photon use
p
parphi
gr ou x 1
msg volume fractions of hot fluid
con br2 x 1 sh;0 1 100
pause
con off;red
msg contours of longitudinal velocity of cold fluid
con sw1 x 1 z 1 5 sh;0 120 100
msg contours of longitudinal velocity of hot fluid
con fw2 x 1 z 6 m sh;0 120 100
msg note the discontinuity
pause
con off;red
msg contours of lateral velocity of cold fluid
con cv1 x 1 y 1 12 sh;-10 40 100
msg contours of lateral velocity of hot fluid
con dv2 x 1 y 13 m sh;-10 40 100
msg note the discontinuity
pause
con off;red
msg contours of temperature of cold fluid
con tmp1 x 1 y 1 12 sh;int 100
msg contours of temperature of hot fluid
con tmp2 x 1 y 13 m sh;int 100
msg note the discontinuity
pause
con off;red
se ve co
u1 cv1 sw1
se ve re 200
msg vectors of cold-gas velocity
vec x 1 y 1 13 sh
se ve co
u1 dv2 fw2
se ve re 200
msg vectors of cold-gas velocity
vec x 1 y 13 m sh
msg note the discontinuity
pause
msg contours of mass-transfer rate
con mdot x 1 sh;int 100
msg
msg Press e to END
enduse
** L(W977) from the USER Input Library
****** TO LOAD CASE: TYPE L(W977) ******
GROUP 1. Run title and other preliminaries
TEXT(Steady 2-fluid ducted flame; parab:W977
TITLE
mesg(PC486/50 time last reported as 2.min
DISPLAY
The 1985-version of the two-fluid model of turbulence is here
used for simulating turbulent combustion in gases. The diffusion
flux is directly calculated from the normal-to-wall-velocities;
an additional source for the normal-to-wall momentum equations,
due to the mean-velocity gradient, is postulated.
The flame spreads from a flame holder in a stream of pre-mixed
combustible gas in a duct of constant cross-section.
duct wall
///////////////////////////////////////
-----------------------*---------------
/*****/
----> /*****/ flame ------>
inlet ** **/ exit
-[*]---------------------------------------
flame holder axis
Reference: Imperial College research of JZ Wu, 1985
ENDDIS
* Fluid 1 is defined as hotter fluid and fluid 2 as
colder one.
* The flow is considered parabolic.
* The system is two-dimensional.
* The heat transfer to the duct wall neglected.
* The densities of the two fluids are evaluated from
the state equation of ideal gas.
* The chemical reaction rate is expressed by an idealised
single-step Arrhenius form.
* It is assumed that only fluid 2 enters the duct at the
inlet. This practice is to emphasise the role of inter-
fluid transport of mass, momentum and energy.
REAL(WIN,Cf,Cm,Cvw,Ct,Ch,Cr,WIDTH,LENGTH)
**** Specifications ****
LENGTH is the full length of the duct;
WIDTH is the half width of the duct;
WIN is the inlet velocity;
WIDTH=0.0381;LENGTH=0.308;WIN=30.0
*** Model constants ****
Cf=0.05;Cm=30.0;Cvw=1.0;Ch=10.0;Ct=1.0;Cr=3.5E3
GROUP 3. X-direction grid specification
PARAB=T
GROUP 4. Y-direction grid specification
GRDPWR(Y,25,WIDTH,1.0)
GROUP 5. Z-direction grid specification
*** The length of duct is 1.0
GRDPWR(Z,35,LENGTH,1.0)
GROUP 7. Variables stored, solved & named
ONEPHS=F;SOLVE(P1,V1,V2,W1,W2,R1,R2,H1,H2)
NAME(W1)=SW1;NAME(W2)=FW2;NAME(R1)=AR1
NAME(R2)=BR2;NAME(V1)=CV1;NAME(V2)=DV2;NAME(H1)=EH1
INTMDT=22;NAME(INTMDT)=MDOT;LEN1=23;NAME(LEN1)=LEN
VIST=24;NAME(VIST)=VIS
SOLUTN(MDOT,Y,N,N,N,N,N);SOLUTN(LEN,Y,N,N,N,N,N)
SOLUTN(VIS,Y,N,N,N,N,N);STORE(TMP1,TMP2,DEN1,DEN2)
GROUP 8. Terms (in differential equations) & devices
TERMS(EH1,N,Y,Y,N,Y,Y);TERMS(H2,N,Y,Y,N,N,Y)
DIFCUT=0.0
GROUP 9. Properties of the medium (or media)
**** EL1=NIKURCH (GRND9) activates the GREX2 sequence for
the length-scale of Nikuradse
EL1=NIKURCH
**** TMP=300.0+1500.0*H1(OR H2)
TMP1=LINH;TMP1A=300.0;CP1=1./1500.0
TMP2=LINH;TMP2A=300.0;CP2=1./1500.0
*** RHO1=(P0+P1)*RHO1B/T1
RHO1=IDEALGAS;PRESS0=1.E5;RHO1B=3.3E-3;RHO2=IDEALGAS;RHO2B=3.3E-3
*** Turbulent-viscosity
ENUT=2FLUID;ENUTA=Ct
GROUP 10. Inter-phase-transfer processes and properties
*** Inter-fluid friction
CFIPS=GRND4;CFIPA=0.0;CFIPB=1.0;CFIPC=Cf;CFIPD=-1.0
*** Inter-fluid mass transfer
CMDOT=GRND1;CMDTA=Cm;CMDTB=0.5;CMDTC=0.0
*** Inter-fluid heat transfer
CINT(EH1)=Ch;CINT(H2)=Ch
GROUP 11. Initialization of variable or porosity fields
FIINIT(SW1)=WIN;FIINIT(FW2)=WIN;FIINIT(AR1)=0.5;FIINIT(BR2)=0.5
GROUP 13. Boundary conditions and special sources
****INLET
INLET(INLET,LOW,1,1,1,NY,1,1,1,1)
VALUE(INLET,P2,WIN);VALUE(INLET,FW2,WIN)
****Flame holder
PATCH(HOLD,LOW,1,1,1,NY/10,1,1,1,1)
COVAL(HOLD,EH1,FIXVAL,0.6);COVAL(HOLD,H2,FIXVAL,0.6)
****North-wall
WALL (NORTHWAL,NORTH,1,1,NY,NY,1,NZ,1,1)
COVAL(NORTHWAL,SW1,1.0,0.0);COVAL(NORTHWAL,FW2,1.0,0.0)
****Momentum source in the normal-to-wall-velocity equations
PATCH(SHSO,CELL,1,1,1,NY,1,NZ,1,1)
COVAL(SHSO,CV1,FIXFLU,GRND5);COVAL(SHSO,DV2,FIXFLU,GRND5);SHSOA=Cvw
***** Chemical reaction source ****
PATCH(CHSO,VOLUME,1,1,1,NY,1,NZ,1,1)
COVAL(CHSO,EH1,POLYNOM,1.0);COVAL(CHSO,H2,POLYNOM,1.0)
CHSOA=Cr;CHSOB=5.0
GROUP 15. Termination of sweeps
LITHYD=50
GROUP 17. Under-relaxation devices
RELAX(P1,LINRLX,0.5);RELAX(AR1,LINRLX,0.1)
RELAX(BR2,LINRLX,0.1);RELAX(CV1,FALSDT,1.E-4)
RELAX(DV2,FALSDT,1.E-4);RELAX(SW1,FALSDT,1.E-4)
RELAX(FW2,FALSDT,1.E-4);RELAX(MDOT,LINRLX,0.1)
RELAX(EH1,FALSDT,1.E-4);RELAX(H2,FALSDT,1.E-4)
GROUP 21. Print-out of variables
NPRINT=LITHYD
OUTPUT(AR1,N,N,N,N,N,N);OUTPUT(MDOT,Y,Y,Y,Y,Y,Y)
PATCH(LPRO1,PROFIL,1,1,NY/2,NY/2,1,NZ,1,1)
COVAL(LPRO1,P1,0.0,0.0)
PATCH(WPRO,PROFIL,1,1,NY/2,NY/2,1,NZ,1,1)
COVAL(WPRO,SW1,1.0,1.0);COVAL(WPRO,FW2,1.0,1.0)
COVAL(WPRO,CV1,0.1,0.1);COVAL(WPRO,DV2,0.1,0.1)
GROUP 22. Spot-value print-out
IYMON=NY/2;IZMON=NZ/2;IPLTL=1000;TSTSWP=LITHYD/4
NPLT=2;NPRMON=100;NZPRIN=2;NYPRIN=2
GROUP 24. Dumps for restarts
IDISPA=2;UWATCH=T;TSTSWP=-1