TALK=T;RUN( 1, 1)Q1 TEXT(S-A 3D TURBULENT FLOW IN AN ELBOW METER TITLE DISPLAY The case considered is the 3D steady, incompressible, isothermal turbulent flow of natural gas at 44bar in a circular elbow meter. The pipe inlet diameter is 0.889m, the pipe bend is 0.874m diameter and the mean radius of curvature of the bend is 1.3145m. The computational domain is extended 4 inlet diameters upstream and downstream of the elbow. The volumetric flow rate is 8.57 m3/s, the gas compressibility factor is 0.824, and the inlet Reynolds number is 3.52E7. The elbow meter is a flow-measurement device which exploits the fact that the flow rate through the bend is proportional to radial pressure difference between the inside and outside of the bend. The calculations are carried out with the GCV solver and the high Reynolds form of the Spalart-Allmaras turbulence model. A similar case using the standard k-e turbulence model is available in Library Case b583. The computed radial pressure difference at the symmetry plane and 22.5o into the elbow is 54mbar, which is in excellent agreement with that given by the gas-industry correlation of flow rate versus pressure difference. Note that this case must be run in the command line and not through the VR Viewer. ENDDIS REAL(DIAM,LENG1,LENG2,LENG3,ANGLE,POWY,POWZ1,POWZ2,POWZ3) REAL(L1DD,L3DD,RCURV,PI,DIAMEB,RADIN,RADEB) INTEGER(KFF,KLL) PI=3.14159 ** Pipe parameters RCURV= 1.3145 ANGLE=-0.5*PI DIAM=0.889 L1DD=4.0 L3DD=4.0 LENG1= l1dd*DIAM LENG2= -RCURV*ANGLE LENG3= l3dd*DIAM DIAMEB=0.874 **Grid POWZ1=0.8; POWZ2=1.0; POWZ3=1.1 INTEGER(LASTK,FIRSTK,NZ1,NZ2,NZ3,NY1,NY2) REAL(POWY1,POWY2) NY1=16;NY2=2;POWY1=0.7;POWY2=1.0 NX =15 NZ1=12; NZ2=15; NZ3=12 GROUP 3. X-direction grid specification CARTES=F; XULAST=PI GRDPWR(X,NX,XULAST,1.0) GROUP 4. Y-direction grid specification RADIN =0.5*DIAM;RADEB=0.5*DIAMEB NREGY=2 IREGY=1; GRDPWR(Y,NY1,RADEB,:POWY1:) IREGY=2; GRDPWR(Y,NY2,RADIN-RADEB,:POWY2:) GROUP 5. Z-direction grid specification ZWLAST=0.1 GRDPWR(Z,10,ZWLAST,1.0) NREGZ = 3 IREGZ=1; GRDPWR(Z,NZ1,LENG1,:POWZ1:) IREGZ=2; GRDPWR(Z,NZ2,LENG2,1.0) IREGZ=3; GRDPWR(Z,NZ3,LENG3,1.0) GROUP 6. Body-fitted coordinates or grid distortion BFC= T KFF=NZ1+1; KLL=NZ1+NZ2+1 ** GSET(C,K:KLL :,F,K:KFF:,1,NX,1,NY,RX,ANGLE,RCURV,LENG1,INC,:POWZ2:) GSET(C,K:NZ+1:,F,K:KLL:,1,NX,1,NY,+,0.0,LENG3,0.0,INC,:POWZ3:) CONPOR(BLOK1,0.0,CELL,-1,-NX,-#2,-#2,-#2,-#2) **Physical characteristics real(qflow,ain,kein,epin,win,rey,dthyd,zfact,gascon,pin,tin) real(wmax,an,ran,wcur,xcur,ycur,zcur,rcur,xcen,ycen,zcen) pin=44.e5;tin=(18.7+273);gascon=8314.3/16.;zfact=0.8235 integer(jj1) enul= 3.47E-7;rho1=pin/(zfact*gascon*tin) qflow=8.57 ain = 0.25*pi*diam*diam ; win = qflow/ain rey = win*diam/enul real(fric,aa,bb) ** use Karman-Nikuradse correlation to estimate f fric=0.25/(1.82*log10(rey)-1.64)**2 do jj=1,20 + bb=sqrt(fric);bb=rey*bb;aa=log10(bb) + bb=4.0*aa-0.4;fric=1./(bb*bb) enddo ** use Hinze data to estimate average turbulence levels kein = fric*win*win epin = 0.1643*kein**1.5/(0.045*diam) **Flow settings. SOLVE(P1,U1,V1,W1);TURMOD(SPALART-ALLMARAS) STORE(ENUT,YPLS,UC1,VC1,WC1,PRPS) FIINIT(ENTI)= 0.012474 FIINIT(U1)=0.0; FIINIT(V1)=0.0; FIINIT(W1)=0.0 ** Inlet PATCH(IN,LOW,1,NX,1,NY,1,1,1,1) COVAL(IN,P1,FIXFLU,RHO1*WIN);COVAL(IN,W1,ONLYMS,WIN) COVAL(IN,U1,ONLYMS,0.0);COVAL(IN,V1,ONLYMS,0.0 ) COVAL(IN,ENTI,ONLYMS,0.012474) ** Outlet PATCH(OUT,HIGH,1,NX,1,NY,NZ,NZ,1,1);COVAL(OUT,P1,1.0E3,0) ** Pipe wall PATCH(WN1,NWALL,1,NX,NY,NY,#1,#1,1,1) COVAL(WN1,U1,GRND2,0.0);COVAL(WN1,W1,GRND2,0.0) PATCH(WN3,NWALL,1,NX,NY,NY,#3,#3,1,1) COVAL(WN3,U1,GRND2,0.0);COVAL(WN3,W1,GRND2,0.0) ** Relaxation parameters DTHYD=5.*LENG1/(NZ1*WIN) RELAX(U1,FALSDT,DTHYD);RELAX(V1,FALSDT,DTHYD) RELAX(W1,FALSDT,DTHYD) RELAX(ENTI,LINRLX,0.5) ** Output. OUTPUT(P1,Y,N,P,Y,Y,Y) OUTPUT(U1,Y,N,N,Y,Y,Y);OUTPUT(V1,Y,N,N,Y,Y,Y);OUTPUT(W1,Y,N,N,Y,Y,Y) IXMON =NX/2; IYMON=NY/2; IZMON=NZ/2 ITABL=3;NPLT=10;TSTSWP= -1 LSWEEP=500 ** pressure difference expected from gas-industry correlation: q=0.948*sqrt(0.5*Rc/De)*ae*sqrt(2.*dp/rho) where ae=pi*De**2/4. real(dp,ae,cd,dref);cd=0.948 dref=diameb ae=0.25*pi*dref*dref dp=(qflow/(ae*cd))**2;dp=dp*dref*rho1/rcurv MESG(Expected pressure difference across elbow dp ** use arithmetic averaging for momentum diffusion SOLUTN(U1,P,P,P,P,P,N);SOLUTN(V1,P,P,P,P,P,N) SOLUTN(W1,P,P,P,P,P,N) ** activate gcv solver GCV=T ** use minmod discretisation scheme for convection SPEDAT(SET,GCVSCH,UC1,C,MINMOD) SPEDAT(SET,GCVSCH,VC1,C,MINMOD) SPEDAT(SET,GCVSCH,WC1,C,MINMOD) SPEDAT(SET,GCVSCH,ENTI ,C,MINMOD) EGWF=F WALPRN=T DISTIL=T EX(P1 )= 3.656E+02 EX(U1 )= 3.369E-01 EX(V1 )= 1.703E-01 EX(W1 )= 1.319E+01 EX(UC1 )= 1.605E-01 EX(VC1 )= 7.347E+00 EX(WC1 )= 7.499E+00 EX(PRPS)= 9.573E-01 EX(YPLS)= 4.751E+02 EX(ENUT)= 4.795E-03 EX(DWDY)= 9.573E-11 EX(DWDX)= 9.573E-11 EX(DVDZ)= 9.573E-11 EX(DVDX)= 9.573E-11 EX(DUDZ)= 9.573E-11 EX(DUDY)= 9.573E-11 EX(LTLS)= 2.516E-02 EX(WDIS)= 1.309E-01 EX(ENTI)= 4.795E-03 EX(WCRT)= 7.499E+00 EX(VCRT)= 7.347E+00 EX(UCRT)= 1.605E-01 EX(VPOR)= 9.573E-01 LIBREF = 0 STOP